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Problem

•
 

Localized corrosion shows great complexity as a function of
•

 
Chemical species in aqueous environments

•
 

Concentrations of components 
•

 
Temperature

•
 

Composition and microstructural
 

features of the alloy, etc.

•
 

Focus area: Modeling the effect of aggressive (chloride) and 
inhibitive ions (oxyanions)

•
 

Engineering approach: Predict two characteristic potentials as 
a function of environmental conditions
•

 
Corrosion potential 

•
 

Repassivation
 

potential



Predicting localized corrosion:
 Repassivation and corrosion potentials 

versus environmental conditions
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Scope
•

 
Develop an experimental matrix of repassivation

 potentials for alloy –
 

chloride –
 

oxyanion
 combinations

•
 

Reproduce and correlate the data using a 
mechanistic model

•
 

Generalize the model in terms of alloy 
composition to be able to predict the localized 
corrosion of alloys that have not been 
experimentally investigated



Experimental Methods
•

 
Repassivation

 
potential 

measured using crevice 
corrosion specimens

•
 

Tests are designed to  
initiate crevice corrosion 
and measure potential at 
which crevice corrosion 
stops

•
 

Methods:
•

 
Cyclic potentiodynamic

 polarization (CPP)
•

 
Potential staircase

Performed at Southwest
Research Institute



Experimental database: 
Combined effect of Cl-

 
and inhibitors 

•
 

Matrix of:
•

 
Inhibiting anions:


 

Molybdates


 

Hydroxides


 

Vanadates


 

Sulfates


 

Nitrates


 

Nitrites 

•
 

Alloys:


 

316L 


 

600 


 

690 


 

254SMO 


 

2205 


 

825 


 

S-13Cr


 

22



Calculating repassivation
 

potential

•
 

Potential below 
which stable pitting 
or crevice corrosion 
do not occur

•
 

Relatively insensitive 
to surface finish as 
well as prior pit 
depth as long as the 
pit depth exceeds a 
certain minimum 
value  

•
 

The model simulates 
electrochemical processes in a pit 
or crevice in the limit of 
repassivation



Fundamentals of the Erp
 

model

•
 

The expressions can be solved in the limit E -> Erp
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Contributions of water and
inhibiting species, which 
participate in oxide formation
in the repassivation

 
process

Contributions of aggressive
species, which form 
complexes with metal
species



Fundamentals of the Erp
 

model

•
 

Model parameters
•

 
Parameters for metal dissolution reactions mediated 
by the adsorption of aggressive species 


 

Gibbs energy of activation 


 

Reaction order with respect to aggressive species
•

 
Parameters for the formation of oxide mediated by 
the adsorption of water or inhibitor species 


 

Gibbs energy of activation 


 

Electrochemical transfer coefficient

•
 

Activities of aqueous species are calculated 
from a thermodynamic electrolyte model



Erp
 

in Cl
 

solutions:
 Alloys 825, 690, and 

316L

•
 

The slope changes as a 
function of chloride 
activity

•
 

The steep portion of the 
slope is more 
pronounced for more 
corrosion resistant alloys
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Alloy 690:
 Erp

 
for Cl-

 
- OH-

 
systems

•
 

Steep increase 
in slope 
indicates 
inhibition at a 
certain OH-

 concentration
•

 
At some 
conditions, 
inhibition cannot 
be achieved due 
to solubility 
limits
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Alloy 690:
 Erp

 
for Cl-

 
- MoO4

2-
 

systems
•

 
Transition occurs 
at somewhat 
lower 
concentrations of 
molybdates than 
hydroxides

•
 

Solubility limits 
are also 
significant
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Alloy 690:
 Erp

 
for Cl-

 
- VO3

-
 

systems
•

 
Transition 
occurs at still 
lower 
concentrations 
of the inhibitor 
than in the case 
of molybdates
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Alloy 690:
 Erp

 
for Cl-

 
- SO4

2-
 

systems
•

 
Sulfates are 
reasonably 
effective for 
alloy 690 even 
though they are 
less effective 
than other ions 
for 316L  
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316L stainless:
 Nitrates vs. 

nitrites
•

 
Both nitrates and 
nitrites are effective 
as inhibitors

•
 

Solubility limits at 
high Cl concentrations 
may favor nitrites
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Effect of molybdates on Erp

 

of 
various alloys:

 Transition depends on the 
corrosion resistance of the 
alloy; patterns are similar
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Alloy 22 in Cl-
 

-
 NO3

-
 

solutions
•

 
The alloy is resistant to 
localized corrosion (high 
Erp

 

values)

•
 

Nitrates can inhibit even 
concentrated chloride 
solutions at high 
temperatures
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Erp
 

in Cl-
 

- NO3
-

 
solutions:

 Alloys 316L and 22

•
 

Inhibition is easier for a 
more resistant alloy –

 inhibition can be 
achieved for alloy 22 at 
higher temperatures at 
high Cl concentrations690
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Erp
 

correlation
 Step 1: Parameter for Cl-only systems

•
 

Reaction orders and electrochemical transfer coefficients 
have generalized values

•
 

Calculation of the Gibbs energy of activation
•

 
Baseline contribution for Fe-Ni-Cr alloys

•
 

Increment due to the effect of Mo and W

•
 

Increment due to N

•
 

Miscellaneous contribution of other elements

NiCrNiCrNiCl,AFeCl,ACl,A ww.ww.w)Ni(gw)Fe(g)Ni,Fe,Cr(g 3132789622  

)x.x.()ww(w)W,Mo(g .
Fe

.
Ni

.
WMoCrCl,A

313140 0863455488  

 )ww(e.we.ww)N(g NiFeMoCrNCl,A 26148069671  

CrNbCl,A ww)misc(g 1542 



Generalized correlation for predicting 
Erp

 

of Fe-Ni-Cr-Mo-W-N alloys
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Example: T = 368 K

•
 

Reproduces Erp

 

for 
15 metals (13 
stainless steels 
and nickel-base 
alloys, Ni, and Fe)

•
 

Predictions have 
been verified from 
296 K to 423 K



Erp
 

correlation
 Step 2: Effect of oxyanions

•
 

An alloy’s tendency for repassivation in oxyanion-
 containing environments is correlated with that in 

oxyanion-free solutions
•

 
A relationship exists between the Gibbs energy of 
activation for the formation of oxide due to the 
adsorption of oxyanions and that due to the adsorption 
of H2

 

O



Erp
 

correlation
 Step 2: Effect of oxyanions

•
 

Erp

 

parameters for 
Cl –

 
oxyanion 

solutions can be 
predicted based on 
alloy composition

•
 

The quality of such 
a prediction is 
similar to the 
quality of 
individual 
correlation
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Summary
•

 
A matrix of repassivation

 
potential data has been established for 

alloys 316L, 600, 690, 254SMO, 2205, 825, and S-13Cr in the 
presence of various combinations of Cl-

 
with OH-, MoO4

2-, VO3
-, 

SO4
2-, NO3

-

 
and NO2

-

 
ions

•
 

A mechanistic Erp

 

model reproduces the data with good accuracy 
•

 
The model predicts the transition from the concentration range 
in which localized corrosion is possible to the region in which 
inhibition is expected 

•
 

The model can be used to predict the repassivation
 

potential in 
complex process environments 

•
 

A generalized correlation makes it possible to predict Erp

 

for Fe-
 Ni-Cr-Mo-W-N alloys for which experimental data are not 

available
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