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Energy conversion and its future modifications

ENERGY CONVERSION

from Today to Future

useful energy

useful energy

.

energy /
sources v
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Various energy forms

Balance of energy — I. Law of Thermodynamics

AQ=AU+AW, o . AQ= —j qda ... heat imput
=AH +AW,_ . voume H=U+ Wvol work ---€nthalpy
- AH Atp AlrI/Vmech AH J.ph dV tp J.a_pdv A1rI/Vmech - J. v tdis da’

or
2

h, = v? +u+Ly ¢ ... total enthalpy-for convective problems
p

(4

Balance of entropy- Il. Law of Thermodynamics

AQ <TAS, +TAS,,  AQ=TAS,,
TAS, >0

Ir —
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Various form of energy utilization

AQ =AU +AW,,
AQ =AW,

cchichem  fOT AU =0 (T =const

hem  ---combustion

AQ=0, AW, ., =0, for AU=0 (T =const)

AW,y + AW, = 0...conversion of

mechanical energies

AQ=TAS =AH +AW, =AH -AG-SAT,

for AW

non volume
_AG _ AH-TAS—-SAT _W,—SAT
Tl AH AH AH

onvolume

=W, ..electric work
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Energy in chemical bounds

Energy of chemical reactions

AQ =AH + AW

non volume

=) -

%
<G

Fuel + Oxidant — Product
The fuel will be oxidized during combustion
Oxidation from a chemical point of view means loss of electrons
The oxidant will be reduced during combustion
Reduction from a chemical point of view means gain of electrons
Therefore: Combustion is associated with the ecxhanae of electrons!
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Efficiency of fuel combustion

Electrochemical Reaction
(indirect electron transfer)

‘ Heat:  -49 kJ/mole
. AH=-286 kJ/mol
‘ AG=-237.13 kJ/mol
Electricity: -237 kJ/mole

Losses caused
by entropy term

TAS TAS |
I+——| ~80%
Nruel cen = [ AG o
- Electrlclty

(direct electron transfer, internal short circuit at atomic level)

. Heat:  -286 kJ/mole
‘ ' e
Electricity: -114 kJ/mole

k- 40%

2x2e 2x2e

—1— ZLou
Ncamot =

) n >
\ v 2 ¥
(oo )= G = (i) = S

Turbine Generator
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Performance of fuel cells

FUEL CELL CONCEPT

Oxidation and are realized at the two
different places; anode and

electro-chemical Reactors,

H,O
cations
ANODE —_— CATHODE
Fuel Ele(ctrolyte Oxidant
gas- .g. air/O.
eg H, impermeable) ©9
B
anions

converting chemical energy directly into electricity.
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Fuel tested for everyday application

Thermodynamic efficiency for different reactions

useful energy output _ W, (electric work) . AG
= inthebestcase = —,
energy input T AH (heat of combustion) AH
AG _AH-TAS-S AT W, —SAT
= 1-8 ford(q)=——
L v =0 ()(1-5(0)) for3(a) ="
. -AH -AG°
Reaction n [kJ mor] E% V] [kJ mor} E V] N
Hy + 172 05 -> H0 jq 2 286,0 1,482 237,13 1,229 0,829
Hy + 12 0, > H,0 g 2 2418 1,253 2286 1,185 | 0946
CO +1/20,-> CO, 2 2831 1,467 257,2 1,333 0,909
CHOH +11/20,-> 6 726,6 1,255 702,5 1,214 0,967
CO, +2H,0 4
CH,+20,->
00z + 2 HO g 8 8024 1,039 800,9 1,038 0,999
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Thermal efficiency versus Temperature

100% - - -- - == mmmmmm o mmm e s oo ee o e
Hz'oz

. 0\
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S

e

L 25% +

0% b + f f t
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n _ L High ™ Low AG
Carnot — °
Tign Temperature / °C

M Fueicen = A

We expect high efficiency at low temperature when using hydrogen,
And we would be happy to use methane directly.
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Low Temperature Hydrogen Fuel Cells-LTHFC

Thermodynamic analysis of the transport processes in the Hydrogen
Fuel Cells (HFC) is oriented to the following items:

@ to formulate adequate theory of mixture, which include such
internal processes like capillary flow and swelling

@ to derive the entropy production for the HFC and to define all
relevant thermodynamic forces and fluxes

@ to estimate the maximum efficiency of the HFC and especially of
the Polymer Electrolyte Membrane (PEM)

@ to find the maximum coupling between diffusion flux end electric
flux

@ to estimate the possible enhancement by the capillary action of
water
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Standard electrochemical analysis of fuel cells

Net current density as a function of Gibbs free
enthalpy at the cathode and anode surface

= Ju - J. = Fh,[Red] - FK [Ox], &, = 4, exp[— 46, }

k.= A.exp| - AG,
RT
Zero current potential £ is defined for j =0

AG
o = FA [Red ——a
Jo . [Re: ]eXP{ RT

0
j| = FA(,[Red]exp{_W} _

anodic current

=FA, [Ox]exp[— i(GT(

AG? +oFAd
RT

j| = FA(,[Ox]exp[—
cathodic current

To satisfy this condition we define the

overpotential n
Ap=E,+n
Transfer coeff. a>~0.5
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Standard electrochemical analysis of fuel cells

The Butler-Volmer Equation
Charge transfer between the electrodes

o zoFn | z(1-a)Fn
/(n)—Jo{eXp[ RT} eXP{ RT }}

Jo -.- exchange current density

Current-Voltage-Curve Dominated by Charge Transfer

[=j(@nodic)
j(cathodic)
— j(total)

jo =1 mA/cm?
anodic partial current

Red — Ox +ize& resulting ourrent

j/ mA/cm?
°

~ cathodic partial current
| Ox+ze€—Red Taking approx. ' =1+x,
e.g., for n=50mVv

J = Joexp oFn
Jo RT

01 -0.05 0 0.05 01
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ture and corresponding relevant processe
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Standard fuel cell measurement

| —0—jp=10%;R,=0,15;j=1,3
Cell voltage vs. current —4-jo=10%;R,=0,10;j,=22

density ¢(j) curves —0-jp=10%;R,=030;j,=12
| ——j,=10%; R, =0,15;j,=1,4

b,=123V

Charge transfer Ohmic losses R, j

overvoltage Mass transfer

overvoltage

0,800)
N e o T S
& 0,600

0.4

0,200
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P,=0,175Wem? PP=16  jJAcm2 PP=36 PIP=6

| () = Dli) = Duli) = Rad = Ooq = (neli)] * Inai)] * R |i]) |

F. Marsik (IT ASCR & UWB in Pilsen ) HFC efficiency IAPWS Meeting 2012 15/35



Theory of mixture

Gibbs definition of entropy
TS:U—t;Ie—Z,UJaWa (1)

where (') is material (Euler) derivative.

All extensive quantities for mixture depends on a mass fraction

_ Pa
P

W, , for pa=MsCa, p=) pa 2)
[0

Here p, [kg/m3] is density, ¢, [kmol/m3] is molar concentration and
M., [kg/kmol] is molecular mass of chemical component «.. Analogously
is introduced volume fraction
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Internal energy, deformation and entropy

U= Wolly, €= Wa€a, S=) WS, (3)
o o (e}

Euler deformation tensor e is symmetrical tensor for solids and it
shrinks for fluids in the tre = e(4) and then the specific volume can be
&

replaced by

1) 1

—t = V=—= W Vo (4)
p p za:

Stress tensor has different form for solids

(o)
te=p(eq), T)H+ te (5)

and for fluids
te/ - _p(p7 T)I (6)
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e Theory of mixture
@ The entropy production
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Entropy flux and entropy production.

Entropy flux is

j(S) — (jq — ZajDa,u’oz + ?iDa(ual — ta/pa)) (7)

and entropy production
+)] g (1Y)
= |iq ipa(U o T
. Ho F. Mo Apép
_ZIDQ[V<T)+T+T]+Z 220 > 0 (8)

P
The last inequality is an alternative form of II. law of thermodynamics.

tais — ZpaVDa ®vp, | :d
(0%
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e Theory of mixture

@ Thermodynamic forces and fluxes
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Transport phenomena J and Driving forces X.

heat jq V(7)
visco-plastic
- for solids tas (T, d, tas) ¢
- for fluids pdis d
©)

- viscosity tgs — Y, paVD, @ Vb, <
- swelling te/o + tasa V0. V(F)
concentration diffusion jp,, (Vi)
thermodiffusion jp,, (Ua — 11a) V (F)

- - Fo — _ ZaF
electric current j, , =5 Ve
capillary flux j,_ e =11V(o-a)
chemical reaction and phase transition ¢, A—TP

Tab. 1. Independent thermodynamic forces and fluxes
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General form of transport properties of PEM

General linearized form of all these processes for an isothermal state is

o L Lows F Lue

o, = == Viw = Ve = = V(0d)

My Lpwe Ly Fo L

Iows = Jemp= = == Viw = =V )
L Lot F Leo
e = —+ Viypw — . Vo — - V(ca) 9)

Here the fluxes b, , jpw+, jc have physical dimension [kg/m’s] and electric current
density jo [A/m’]. All phenomenological coefficients

L= LH+W7 LHJFHJr ) LH*C

(10)

m3

LWW ) LWHJr ) LWC [kg K. S:|
LCW ) LCH+ 9 LCC

have the same physical dimension and the application of Onsager reciprocal relations
L,‘j = Lj,' is possible.
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Coefficients of diffusion and conductivity in PEM

Diffusion coefficient
(Einstein-Smoluchowski)

2
DH+z !
K‘CD
[[m] mean step 2-3 nm - bulk water
T, [s] mean time of a step 0.8 nm - stirface water
k=24 or 6 for 1,2 or 3 dim. /

Grotthus mechanism for water

Hao
H* H,
K<<
H H
) perflourinated
—. polymer - nation

Kreuer et. al., J. Membr. Sci. 185 (2001) 29
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Coefficients for different molecular mechanisms

Conductivity ~#2+ [S /cm]
H3o+
Moo = 19, T = 360 K

F. Marsik (IT ASCR & UWB in Pilsen )

Tab 2. Diffusion coefficients and electric cond
calculated by Einstein - Smoluchowski formula. The experimental values of the proton
conductivity (see Choi P. at al. 2005) of the Nafion EW 1100 are very close to the

value 0.12 S/cm for the hydronium ion HzO™.

HFC efficiency

surface diff. | Grotthus diff. | En masse diff.
step time 7 [ps] 1610 1.5 5.78
step distance /yol [nm] 0.255 0.255 0.28
Diffusion coef. D, [cm?/s] 0.006 7.22 2.26
Conductivity %ﬁ [S/cm] 0.057 2.24 0.703
My =1, T=360K
0.0003 0.12 0.037

uctivity for different mechanism are
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Fuel cell efficiency

The thermal efficiency 7 = % = M
aWe _

i = —iVo [W] is generated electric power.
The maximal possible (theoretical) efficiency of a chemical transformation is

formulated as 7meor = ﬁ—ﬁ. The thermal efficiency can be expressed from the balance
of energy

where W; is an electric work and

TAS
applying the change of the Gibbs free enthalpy AG = AH — TAS — SAT. The
theoretical efficiency is

_AG _AH-TAS—SAT _
Ttheor = E = AH =
We — SAT SAT
U= 1-§ for 4&(q) =
Ah = m@)(1 = 3(@) for 3(a)= T
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Thermal efficiency

Entropy production

o(8) =t : d_JWxW—JeXe—&-ZALTC” >0
P
Thermal efficiency

W | —TXde o duXw A dXe
MEAHT TAH XJd. T
where
Xde XoJe Xede \ '
€= = 1+
JuXyw +Jde X Ju Xy Juw Xy
so that
. &
=217
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Membrane efficiency and coupling

The ratio
o Xde W e o

M= Xe  AHm 1—¢  1-2n
is the efficiency of the PEM only. AH,, is the change of the enthalpy of the consumed
Hydrogen.
The corresponding electrical work in Volts for 1 mol of Hydrogen is
AHn = 286.02[kJ/mol] /(2 - 96.48) = 1.481[V].
Coupling coefficient g and force ratio y

Lypo+ _ \/[H3O+H3O+XC _ \/ZH3O+H3O+ ZFV¢

Q= ——, ) _ 0
N VEwXe Vow Y (an+a0)
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Maximal efficiency and maximal coupling

_ /1 — 02 _1 _ _ 02
% — O7 i_e_, ¥ = M and Yo = ﬂ
dy q q
yi 2
Nt max = m and Nmmax = Y1

Maximum coupling condition for Hydronium ions H*O*

N M D
Je = —LiogrXw = _PH3o+w Ifq—/;_m H Ot

Diffusion coefficients by Tab. 2 are Dysp+ = 7.22 - 10~° cm? /s- Grotthus mechanism
and for water we put D, = 2.26 - 1075 cm? /s - this value corresponds to the
self-diffusion . The coupling coefficient g is by the definition

LH30+W 1 - WW MH30+DH30+ _ 1 _ WW
=4/337——
WWMWDW w
waLH3O+w
The maximum coupling g = 1 is reached for the w,, = 0.77, in the other words; the
maximum coupling is reached when 23% of water is ionized to the Hydronium.

(1w + ao)
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Coupling coefficient—efficiency dependence

1.0 r AG
Neor =77 =0.83 ,
0.8
. 0.6 - PEM effici
FC efficiency eficiency
_FCel energy output _ W, |y o fctalelenergyinPEM _ JX,

FC energy input AH 0.4 " actual chem. energy in PEM  J_ X, 4

-‘1.0 1.0

.05 0.5
unreal real processes

H O W

Coupling coefficient ¢= T

Figure: The influence of coupling coefficient on the values of the thermal
efficiency of Hydrogen fuel cell and on the efficiency of PEM.
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FC efficiencies close to operating conditions

_AG 8(q) =387
M = r . .
08

PEM efficienc 0'1;

3g=1)=1-N

0.6/

v gpeingendions _—— T 0985 0990 0 1,000

0. 1’ Coupling coefficient g
04 FC efficiency 02
03"
092 094 0.96 0.9% 100 t
-0.4:
Coupling coefficient g

The thermal and PEM efficiencies close to the operation conditions; the relative losses
4(q) of the enthalpy AH express the multiple of the output electric power W..
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Water transport enhanced by capillarity

Capillary flux in the pore of the radius r, is driven by surface tension o, of liquid water,
which has the kinematic viskosity vy, is given by

o _Ledlowan) 5 d ( dA\ 5 d

o= T T T 8w dz \7"dV) T 8w, dz PmIwEn)
and can be enhanced by the change of surface tension ow(z) or by the membrane
porosity vim(Z) in the flow direction

% (a%) = % (0(2)Vim(2)) = Vin(2) d‘;(zz) +o(2) d"gf) <0
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Surface tension drives the water in pores

O A 6,=0.072 N/m

0.90,, /t

10 pm

. rnod( dA\ _ . s(o(z+D2)—0(2)
Je="8u, dz (Udv>_ 2-10 oAz

5(09—-1) kg g
105 m?s 0.02 cm?s

The experimental investigation of this phenomenon is in progress.

=2-10"
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@ the entropy production contains all relevant processes, including the water
diffusivity, electric conductivity in membrane and capillary action of the water in
membrane pores, the chemical reaction at the electrodes and structural changes
(swelling) in the PEM are included.

@ the thermal efficiency of the whole FC and the efficiency of the PEM are
analyzed in detail and the conditions for their maximum are formulated

@ from the condition for maximal coupling between water diffusion flux in the PEM
and corresponding maximal electric density flux, the optimal concentration of
Hydronium ions in water is specified

@ the influence of capillarity of water for the typical Nafion membrane structure is
appointed and possibilities of its enhancement are formulated
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For Further Reading |l
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